000 01819cam a22003494a 4500
005 20150623165357.0
008 131022s2011 maua b 001 0 eng
020 _a0123748569
020 _a9780123748560
040 _aDLC
_beng
_cDLC
_dYDX
_dBTCTA
_dYDXCP
_dBWX
_dDEBSZ
_dCDX
_dIUL
_dDLC
042 _apcc
060 _a006.3'12
_bW D
082 0 0 _a006.3'12
_222
084 _a006.3'12
_bW D
100 1 _aWitten, I. H.
_q(Ian H.)
245 1 0 _aData mining
_h[[Book] :]
_bpractical machine learning tools and techniques /
_cIan H. Witten, Eibe Frank, Mark A. Hall.
250 _a3rd ed.
260 _aBurlington, MA :
_bMorgan Kaufmann,
_cc2011.
300 _axxxiii, 629 p. :
_bill. ;
_c24 cm.
490 1 _a[Morgan Kaufmann series in data management systems]
504 _aIncludes bibliographical references (p. 587-605) and index.
505 0 _aPart I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
650 0 _aData mining.
700 1 _aHall, Mark A.
700 1 _aFrank, Eibe.
830 0 _aMorgan Kaufmann series in data management systems.
900 1 _aWitten, Ian Hugh.
990 1 0 _a90001a
_b10001aq
001 0000115973
003 0000
942 _cBK
999 _c21985
_d21985