000 | 01819cam a22003494a 4500 | ||
---|---|---|---|
005 | 20150623165357.0 | ||
008 | 131022s2011 maua b 001 0 eng | ||
020 | _a0123748569 | ||
020 | _a9780123748560 | ||
040 |
_aDLC _beng _cDLC _dYDX _dBTCTA _dYDXCP _dBWX _dDEBSZ _dCDX _dIUL _dDLC |
||
042 | _apcc | ||
060 |
_a006.3'12 _bW D |
||
082 | 0 | 0 |
_a006.3'12 _222 |
084 |
_a006.3'12 _bW D |
||
100 | 1 |
_aWitten, I. H. _q(Ian H.) |
|
245 | 1 | 0 |
_aData mining _h[[Book] :] _bpractical machine learning tools and techniques / _cIan H. Witten, Eibe Frank, Mark A. Hall. |
250 | _a3rd ed. | ||
260 |
_aBurlington, MA : _bMorgan Kaufmann, _cc2011. |
||
300 |
_axxxiii, 629 p. : _bill. ; _c24 cm. |
||
490 | 1 | _a[Morgan Kaufmann series in data management systems] | |
504 | _aIncludes bibliographical references (p. 587-605) and index. | ||
505 | 0 | _aPart I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. | |
650 | 0 | _aData mining. | |
700 | 1 | _aHall, Mark A. | |
700 | 1 | _aFrank, Eibe. | |
830 | 0 | _aMorgan Kaufmann series in data management systems. | |
900 | 1 | _aWitten, Ian Hugh. | |
990 | 1 | 0 |
_a90001a _b10001aq |
001 | 0000115973 | ||
003 | 0000 | ||
942 | _cBK | ||
999 |
_c21985 _d21985 |