000 | 04160cam a2200361 a 4500 | ||
---|---|---|---|
005 | 20150712005511.0 | ||
008 | 020125s2002 flua b 001 0 eng | ||
010 | _a 2002020214 | ||
020 | _a1584881712 (acid-free paper) | ||
040 |
_aDLC _cDLC _dDLC |
||
050 | 0 | 0 |
_aQA278.2 _b.M56 2002 |
082 | 0 | 0 |
_a519.536 _221 |
084 |
_a519.536 _bM S |
||
100 | 1 | _aMiller, Alan J. | |
245 | 1 | 0 |
_aSubset selection in regression _h[[Book] /] _cAlan Miller. |
250 | _a2nd ed. | ||
260 |
_aBoca Raton : _bChapman & Hall/CRC, _cc2002. |
||
300 |
_axvii, 238 p. : _bill. ; _c24 cm. |
||
440 | 0 |
_aMonographs on statistics and applied probability ; _v95 |
|
504 | _aIncludes bibliographical references (p. 223-234) and index. | ||
505 | 8 | _aMachine generated contents note: 1 Objectives -- 1.1 Prediction, explanation, elimination or what? -- 1.2 How many variables in the prediction formula? -- 1.3 Alternatives to using subsets -- 1.4 'Black box' use of best-subsets techniques -- 2 Least-squares computations -- 2.1 Using sums of squares and products matrices -- 2.2 Orthogonal reduction methods -- 2.3 Gauss-Jordan v. orthogonal reduction methods -- 2.4 Interpretation of projections -- Appendix A. Operation counts for all-subsets regression -- A.1 Garside's Gauss-Jordan algorithm -- A.2 Planar rotations and a Hamiltonian cycle -- A.3 Planar rotations and a binary sequence -- A.4 Fast planar rotations -- 3 Finding subsets which fit well -- 3.1 Objectives and limitations of this chapter -- 3.2 Forward selection -- 3.3 Efroymson's algorithm -- 3.4 Backward elimination -- 3.5 Sequential replacement algorithms -- 3.6 Replacing two variables at a time -- 3.7 Genierating all subsets -- 3.8 Using branch-and-bound techniques -- 3.9 Grouping variables -- 3.10 Ridge regression and other alternatives -- 3.11 The nonnegative garrote and the lasso -- 3.12 Some examples -- 3.13 Conclusions and recommendations -- Appendix A. An algorithm for the lasso -- 4 Hypothesis testing -- 4.1 Is there any information in the remaining variables? -- 4.2 Is one subset better than another? -- 4.2.1 Applications of Spj-tvoll's method -- 4.2.2 Using other confidence ellipsoids -- Appendix A.Spjotvoll's method - detailed description -- 5 When to stop? -- 5.1 What criterion should we use? -- 5.2 Prediction criteria -- 5.2.1 Mean squared errors of prediction (MSEP) -- 5.2.2 MSEP for the fixed model -- 5.2.3 MSEP for the random model -- 5.2.4 A simulation with random predictors -- 5.3 Cross-validation and the P SS statistic -- 5.4 Bootstrapping -- 5.5 Likelihood and information-based stopping rules -- 5.5.1 Minimum description length (MDL) -- Appendix A. Approximate equivaence of stppingules -- A.1 F-to-enter -- A.2 Adjusted R2 or Fisher's A-statistic -- A.3 Akaikesinformatibn criterion (AIC) -- 6 Estatmaion of regression eficients -- 6.1 Selection bias -- 6.2 Choice between two varies -- 6.3 Selection rduction -- 6.3.1 Monte C o et tionfias i f d lection -- 6.3.2 Shrinkage methods -- 6.3.3 Using the jack-knife -- 6.3.4 Independent; data sets ; -- 6.4 Conditional likiood estimations -- 6.5 Estimationofpopulation means -- 6.6 Estimating least-squares projections ; -- Appendix A. Changing projections to equate sums of squares -- 7 Bayesian mnethods -- 7.1 Bayesian introduction -- 7.2 'Spike and slab'prior -- 7.3 Normal prior for regression coefficients -- 7.4 Model averaging -- 7.5 Picking the best model -- 8 Conclusions and some recommendations -- References -- Index. | |
521 | _aAll Ages. | ||
650 | 0 | _aRegression analysis. | |
650 | 0 | _aLeast squares. | |
856 | 4 | 1 |
_3Table of contents only _uhttp://www.loc.gov/catdir/toc/fy022/2002020214.html |
856 | 4 | 2 |
_3Publisher description _uhttp://www.loc.gov/catdir/enhancements/fy0646/2002020214-d.html |
906 |
_a7 _bcbc _corignew _d1 _eocip _f20 _gy-gencatlg |
||
925 | 0 |
_aacquire _b2 shelf copies _xpolicy default |
|
955 |
_akay 2002-01-25 to SSCD _cjp20 2002-02-01 to subj _djp99 2002-02-01 _ejp85 2002-02-04 to Dewey _aaa07 2002-02-05 _aps16 2002-06-20 bk rec'd, to CIP ver. _fpv12 2002-06-24 CIP ver. to BCCD _aja15 2003-01-14 copy 2 to BCCD |
||
001 | 0000046416 | ||
003 | 0000 | ||
942 | _cBK | ||
999 |
_c53400 _d53400 |