000 01892cam a22003617i 4500
999 _c58482
_d58482
001 16983872
005 20170913113336.0
008 110930s2012 nyua g b 001 0 eng d
010 _a 2011940217
015 _aGBB194301
_2bnb
016 7 _a015864787
_2Uk
020 _a9780817682828 (hbk. : alk. paper)
020 _a0817682821 (hbk. : alk. paper)
020 _z9780817682835 (e-ISBN)
035 _a(OCoLC)ocn751796165
040 _cSOUL
041 _aeng
042 _alccopycat
050 0 0 _aQA199
_b.S69 2012
082 0 4 _a512.57
_223
_bS N
100 1 _aSnygg, John.
_91448
245 1 2 _aA new approach to differential geometry using Clifford's geometric algebra /
_cJohn Snygg.
260 _anew york :
_bspringer science + business media ;
_c2012 .
265 _aاقرأ للنشر و التوزيع
300 _axvii, 465 pages :
_billustrations ;
_c24 cm.
504 _aIncludes bibliographical references (pages 449-458) and index.
505 0 _a1. Introduction -- 2. Clifford algebra in Euclidean 3-space -- 3. Clifford algebra in Minkowski 4-space -- 4. Clifford algebra in flat n-space -- 5. Curved spaces -- 6. The Gauss-Bonnet formula -- 7. Some extrinsic geometry in En[superscript] -- 8. Non-Euclidean (hyperbolic) geometry -- 9. Ruled surfaces continued -- 10. Lines of curvature -- 11. Minimal surfaces -- 12. Some general relativity -- A.A matrix representation of a Clifford algebra -- B. Construction of matrix representations for dirac vectors -- C.A few terms of the Taylor's series for the urdī-copernican model for the outer planets -- D.A few terms of the Taylor's series for Kepler's orbits.
650 1 4 _aClifford algebras.
_91449
650 7 _aDifferentialgeometrie.
_2idszbz
942 _2ddc
_cBK
_iFOE
_6FOE
955 _brl09 2015-07-01 z-processor
_ir09 2015-07-13 ; to Dewey
955 _apc17 2011-09-30
_axh00 2012-02-21 to USPL/STM